

Nitrification and Denitrification

Sidney Innerebner, PhD, PE Indigo Water Group sidney@indigowatergroup.com www.indigowatergroup.com 303-489-9226

Agenda

- Sources and Types of Nitrogen
- Need for Nitrogen Removal
- Physical/Chemical Nitrogen Removal
- Define Biological Nitrification
 - ✓ Chemical equations (stoichiometry)
 - ✓ Organisms involved

Agenda

- Unit Processes for Nitrification
- Define Biological Denitrification
 - ✓ Chemical equations (stoichiometry)
 - ✓Organisms involved
- Unit Processes for Denitification

Sources and Types of Nitrogen

Quantities

- ✓ 16 grams/cap/day.
- ✓ 20 to 85 mg/L influent concentrations typical.

Recycle Streams

- ✓ Digester supernatant
- ✓ Belt press filtrate

Typical Forms

- ✓ 40% organic
- ✓ 60% ammonia
- ✓ <1% nitrate

Ammonification

Rule of Thumb

Ratio of TKN/BOD₅ for domestic
 wastewater is 0.1 to 0.2

- ✓ Recycle Streams
- ✓ Septic, and/or
- ✓ Industrial Waste
- TKN / NH₃-N is about 0.65

TKN = Total Kjedahl Nitrogen

If BOD₅ is 250 mg/L, then TKN should be

 $(250) \cdot (0.1) = 25 \text{ mg/L}$

 $(250) \cdot (0.2) = 50 \text{ mg/L}$

Ammonia = 16 - 33 mg/L

TIN

✓ Nitrogen Gas (N_2)

 \checkmark Nitrate (NO₃)

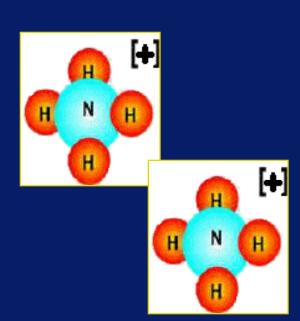
 \checkmark Nitrite (NO₂)

✓ Ammonia (NH₃)

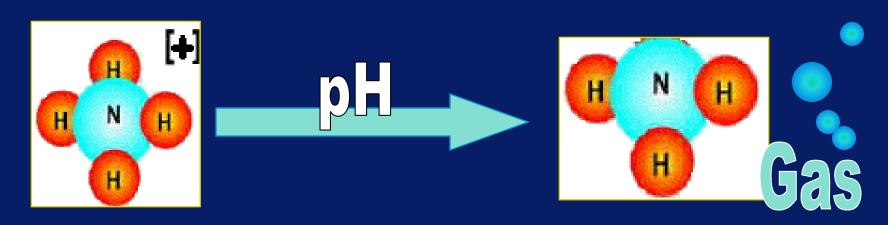
✓ Organic Nitrogen

Analysis Methods

TKN

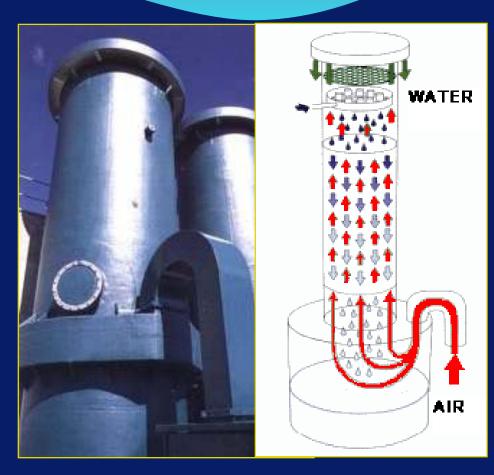

Need for Nitrogen Removal

Types of Ammonia Transfer, Removal, and Conversion


- NH₃-N Stripping
- Ion Exchange
- Breakpoint Chlorination
- Natural Wetlands
- Biological Nitrification

NH₃-N Stripping

- Really only used in industrial applications.
- Ammonium ion predominant in Wastewater
- Convert to gaseous NH₃-N by raising pH up to 10.5 11.5 S.U.

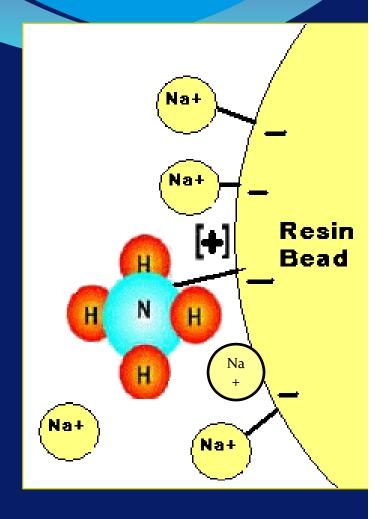


NH₃-N Stripping

- At pH 11 and 25°C, gaseous form is ~98%
- Stripping tower with high air flow to "strip"

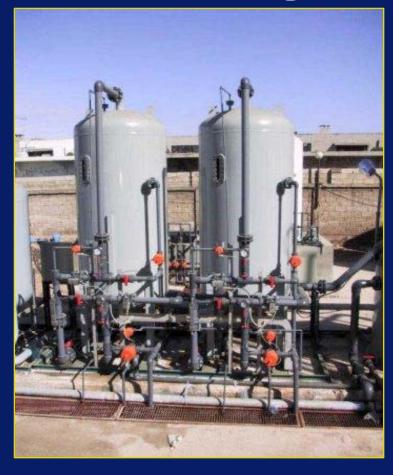
Same principal behind ion selective electrode test.

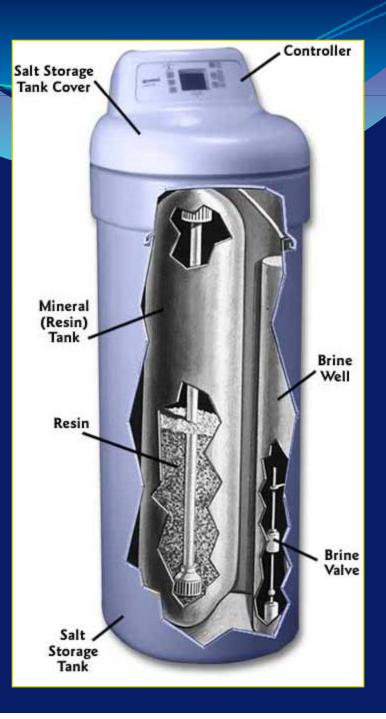
Н


H N H

Н

Ion Exchange

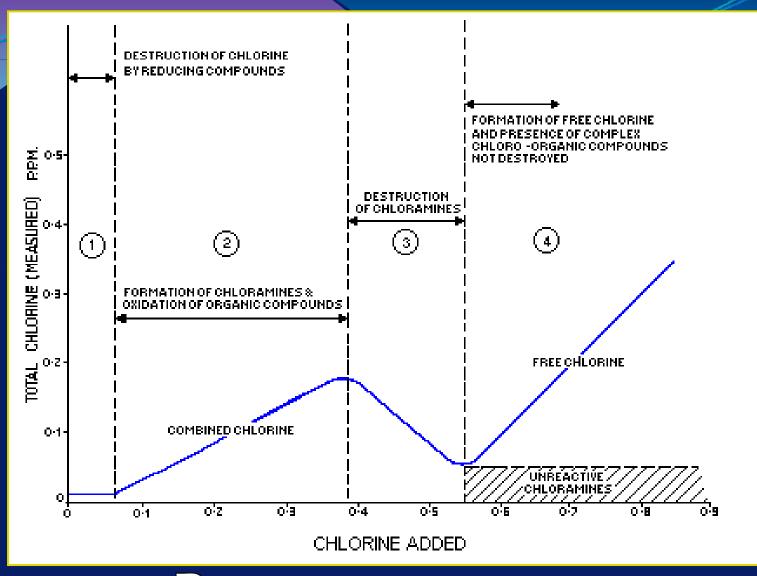

• Typically used for small flows.


- Wastewater passes over resin bed containing ions of same charge.
- Ammonia ions are "exchanged" for ions on resin, typically sodium.
- Resin beds must be regenerated.

Ion Exchange

Breakpoint Chlorination

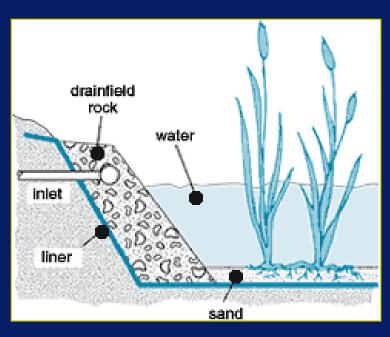
 NH₃-N can be converted to N₂ with Cl₂


• Cl₂/NH₃-N ratio of 10:1 needed

• **EXPENSIVE** – use a polishing step

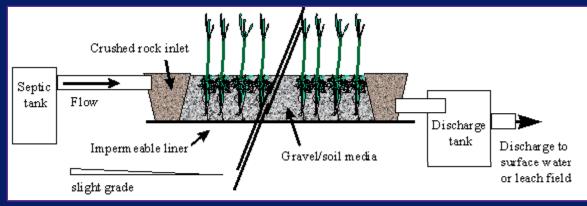
Residual —

Dose


Natural Wetlands

- Plants such as hyacinth or duckweed grown in lagoon systems.
- Plants use ammonia as a nitrogen source (fertilizer).
- Nitrogen is incorporated into biomass.
- Periodic harvesting of plants removes nitrogen from the system.

Natural Wetlands – Free Surface



- Assimilative nutrient removal only
- Removes very little ammonia

Natural Wetlands: Subsurface Flow

- Nitrifying bacteria grow here
- Removes ammonia well when warm

Define Biological Nitrification

- Two-step conversion of NH₃-N to NO₃-N.
- Nitrification is carried out by two unrelated groups of organisms.
 - Ammonia-oxidizing bacteria, Nitrosomonas

• Nitrite-oxidizing bacteria, *Nitrobacter*

Define Biological Nitrification

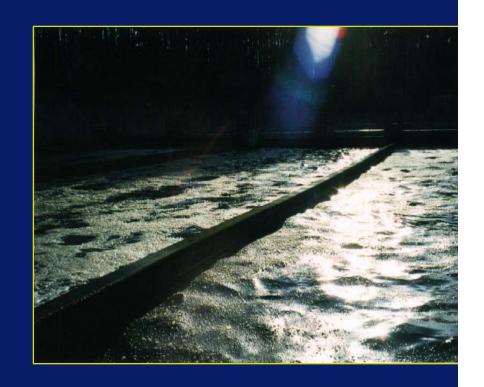
- *Nitrosomonas* convert ammonia to nitrite.
- Nitrobacter covert nitrite to nitrate.
- Overall Stoichiometric Equation: $1.0NH_4^+ + 1.8O_2 + 0.8CO_2 \rightarrow 0.02C_4H_7O_2N + 1.0H_2O + 1.0NO_3^- + 2.0H^+$

Biological Nitrification

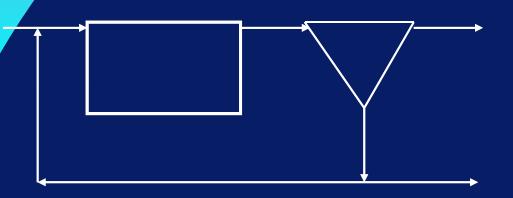
- Consumes 4.33 grams of O₂ and 7.14 grams of alkalinity per gram of NH₃-N oxidized
- Forms 0.15 grams of new cells per gram of NH₃ N oxidized
- Consumes o.o8 grams of inorganic Carbon per gram of NH₃-N oxidized
- Organic loading to process also a factor.
 Nitrifiers can't compete with heterotrophs.

Biological Nitrification Processes

- Suspended Growth
 - Activated Sludge
- Fixed Film or Attached Growth
 - Trickling Filters (tertiary)
 - Rotating Biological Contactors (RBCs)
 - Biological Aerated Filters (BAFs)
- Hybrid Processes
 - Kaldnes, Ringlace, etc.



"Now then, Simpkins. What makes you think you could become a circus clown?"


Conventional Activated Sludge

- Nitrification rates relatively low.
- Air (and electrical demand) high.
- Operator intensive.
- Flexible. Easy to expand for later denitrification.

Activated Sludge Nitrification

MCRT > 5 days

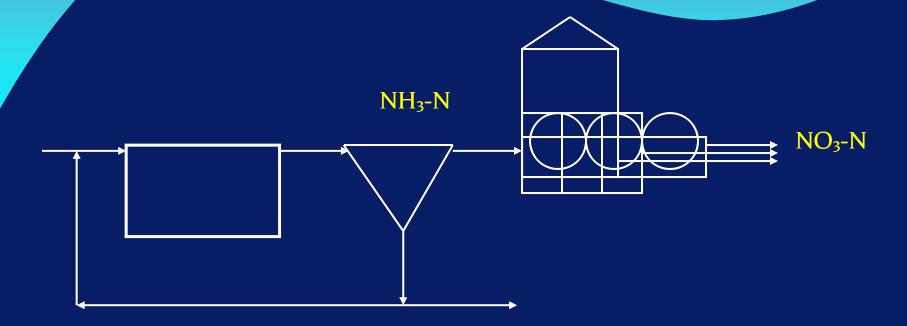
MLSS increases with MCRT

When MLSS is too high, clarifier is overloaded.

Really old sludge can have other problems!

Activated Sludge Nitrification

- Requires higher MCRT, >5 days
- Colder temps mean longer MCRTs
- Maintain DO near 2 mg/L
- Danger of denitrification in clarifier
 - "ashing" or "popping blanket"
- Most activated sludge configurations are capable of supporting nitrification



Fixed Film Processes

Tertiary Nitrification

Secondary Clarifier Effluent

<20 mg/L TSS

<20 mg/L sBOD

Final Effluent

Low TSS, BOD, NH₃-N

High DO, NO₃-N

Wastewater Characteristics That Can Impact Nitrification

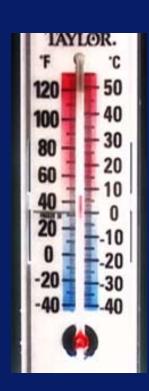
Mean Cell Residence Time

- How long have the cells been in the system?
- Calculate by
 - Take the total amount of solids in the system (aeration basin + clarifier).
 - Divide by the amount of solids wasted per day.

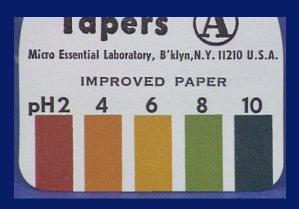
MCRT =

Mean Cell Residence Time

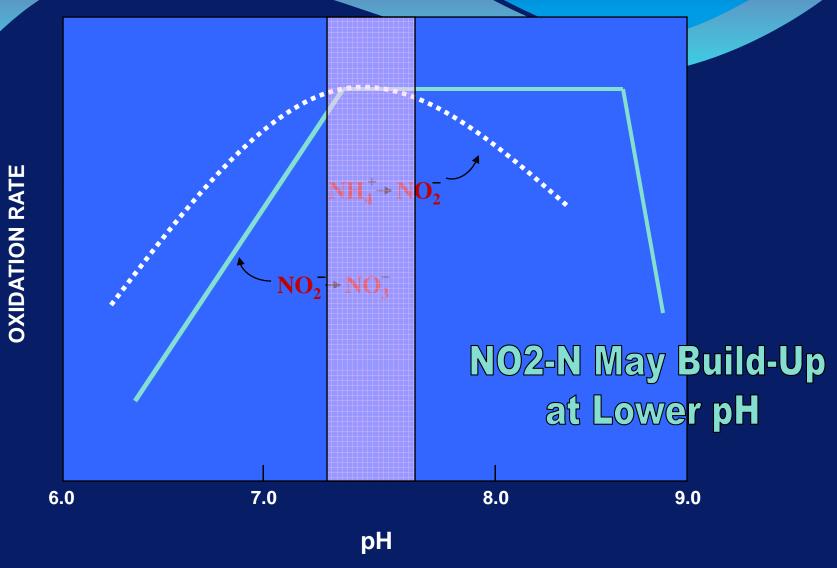
 Generally an MCRT > 5 days is needed for stable nitrification.


Nitrifying bacteria grow very, very slooowly.

• Nitrification in fixed film processes follows a different set of rules.


Temperature

- Nitrification can take place between 10 and 35 degrees C.
- Rates increase as temperature increases.
- Below 5 degrees C, nitrification essentially stops.
- Activated sludge processes are more susceptible to temperature effects than fixed film systems.


pH

- Nitrifiers are sensitive to changes in pH
- Reported "optimum" pHs vary between 5.8 and 8.5
 S.U. A wide range!
- USEPA Nitrification
 rates decrease outside pH
 range 7.0 9.0

EFFECT OF pH ON AMMONIA OXIDATION

Why Low pH Affects Nitrifiers

- Nitrifiers need NH3-N, not NH4+-N
- As pH decreases, ionization increases and less NH₃-N is available.

$$NH_4^+$$
 pH NH_3

• At low pH, nitrifiers are starving.

Why Low pH Affects Nitrifiers

- May account for some of the variation in pH optimums reported in the literature.
- Hydrogen ion toxicity at pH < 5.7
- Keep in mind that bacteria adapt.
- Less than perfect conditions are better than changing conditions.

pH versus Alkalinity

- pH is a measure of hydrogen ion concentration.
- Alkalinity is a measure of a water's ability to neutralize acid.
- Water with high alkalinity will always have a high pH, but water with high pH does not always have high alkalinity.
- Both measurements are needed!

Why Low Alkalinity Affects Nitrifiers

- Alkalinity neutralizes acid.
- Inadequate alkalinity results in low pH.
- Nitrifiers can't use organic compounds for synthesis and growth. Autotrophs
- Carbonate alkalinity may satisfy their need for an inorganic carbon source.

Alkalinity Calculations

- 7.14 mg of Alkalinity are consumed for every mg of NH3-N converted to NO3-N.
- If the influent contains 25 mg/L of NH3-N, you need (25)*(7.14) = 178 mg/L of alkalinity.

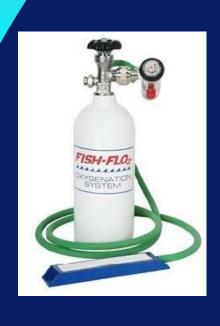
Nitrification

- Residual or excess alkalinity may be needed to maintain a suitable pH range for nitrification. About 60 to 70 mg/L as CaCO3.
- Literature states that alkalinity becomes rate limiting below ~100 mg/L as CaCO3.
- To maintain a residual alkalinity of 100 mg/L in previous example, 278 mg/L of influent alkalinity is needed.

Sources of Alkalinity

• For every mg of _____ added, ____ mg of alkalinity as CaCO3 is gained.

CaO	Quick Lime	1.8
Ca(OH)2	Slaked Lime	1.4
NaOH	Caustic	1.2
Na ₂ CO ₃	Soda	0.9

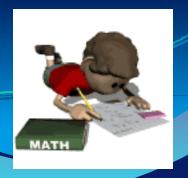


Dissolved Oxygen

- Nitrification is an aerobic process.
- Nitrifiers are OBLIGATE AEROBES
- For optimum nitrification rates, D.O. should be maintained near 2.0 mg/L.
 - Throughout the aeration basin.
 - Check D.O. levels in multiple places.
- Nitrifiers can't compete as well for oxygen as heterotrophic bacteria.
- If not enough oxygen is present, the heterotrophs will get it first.

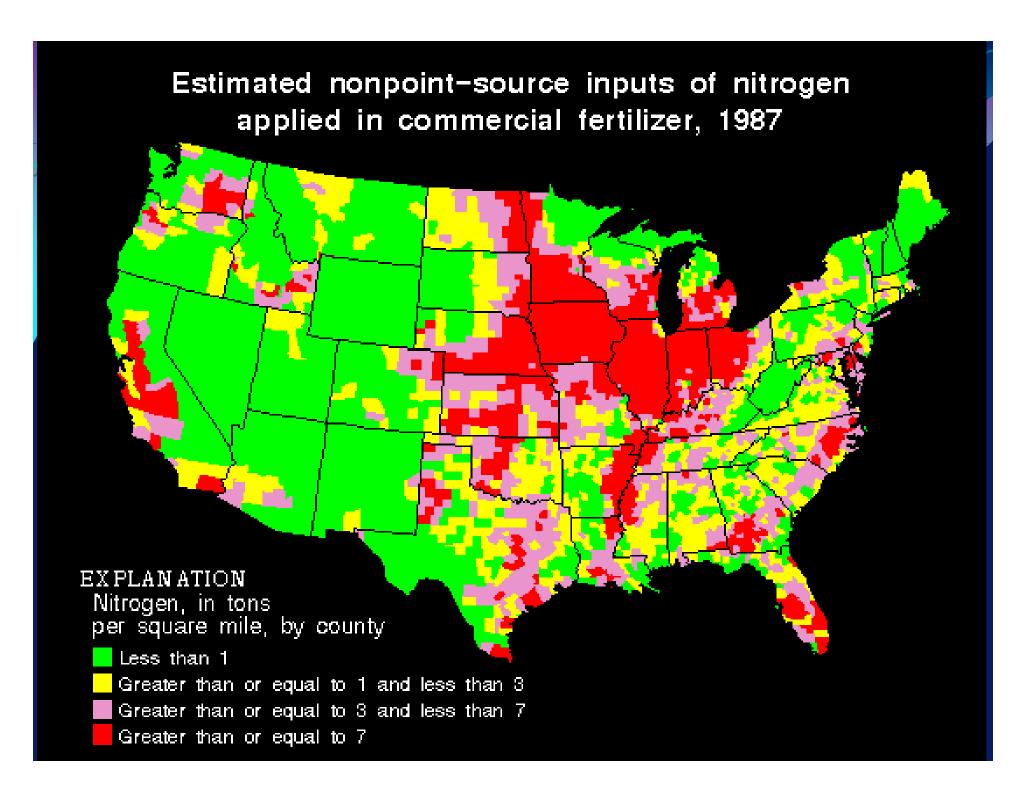
Dissolved Oxygen

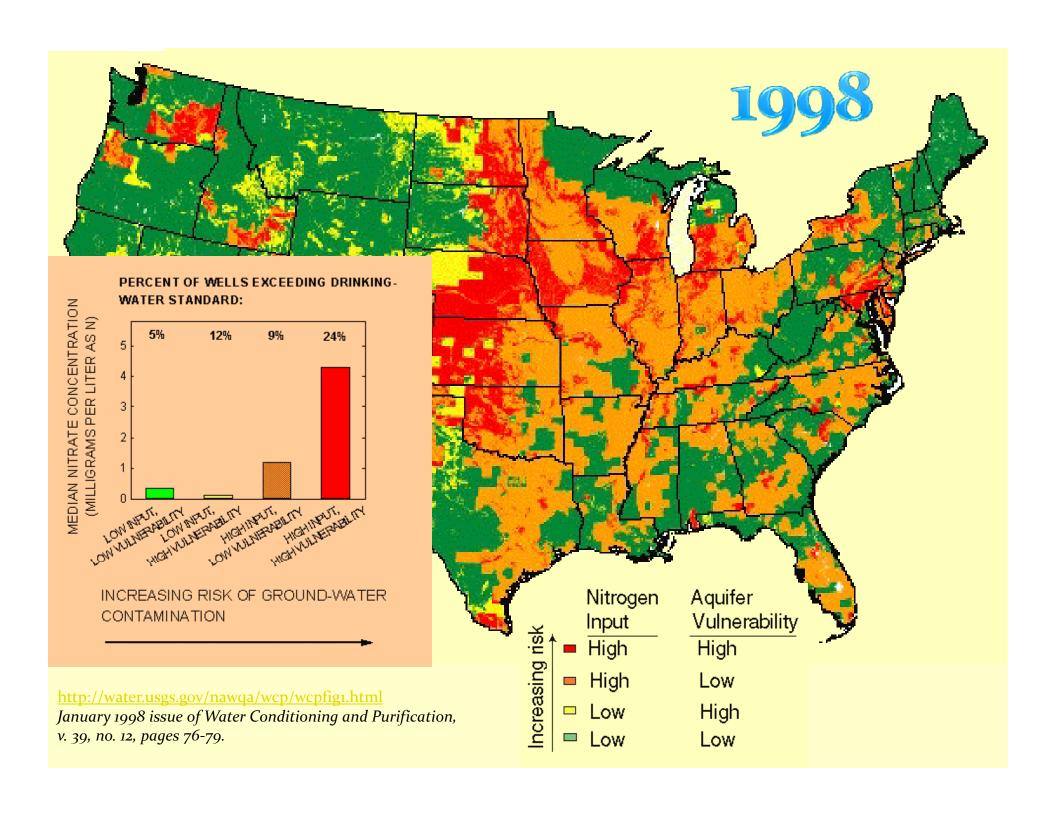
- Calculate difference in oxygen demand between no, partial, and complete nitrification.
- By definition, BOD oxidation requires 1.0 lb of oxygen for every lb of BOD
- Design engineers use 1.2 1.5 lbs of oxygen for every lb of BOD for calculations
- Ammonia oxidation requires 4.33 lbs of oxygen for every lb of ammonia-N.

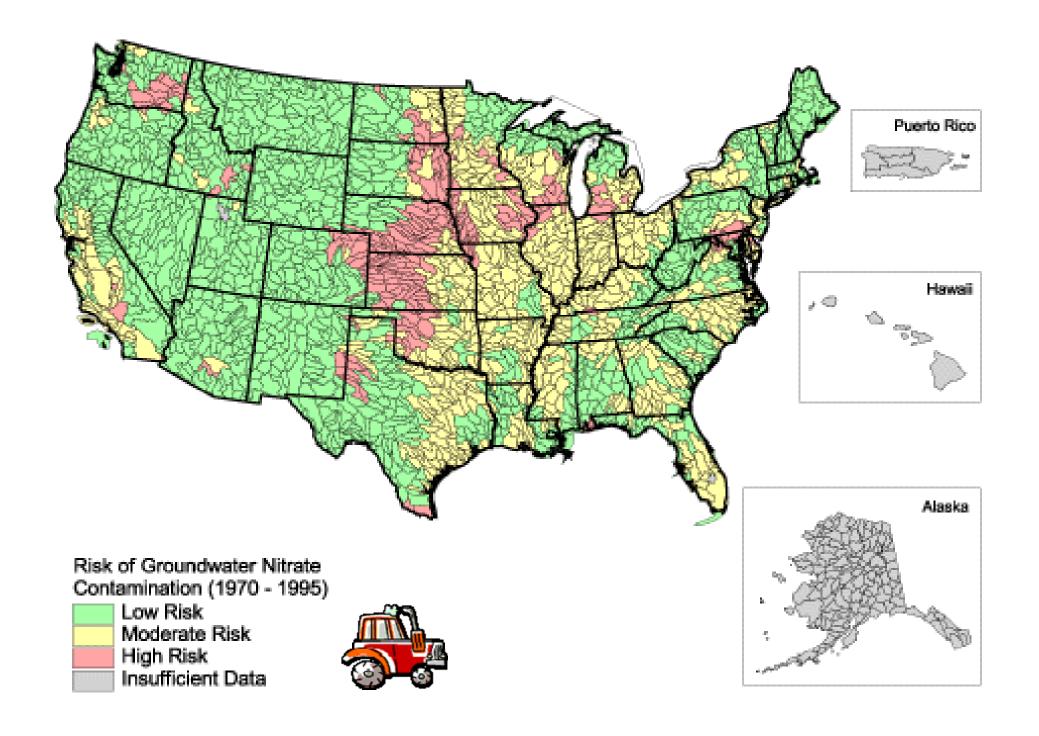


Influent BOD = 250 mg/L

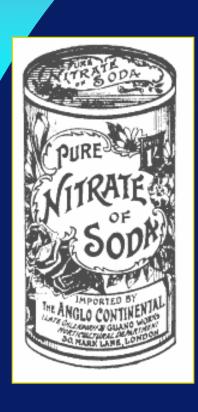
Influent NH3-N = 30 mg/L




20,850 lbs/day


2,502 lbs/day

If there is no nitrification, ~26,000 lbs/day of oxygen.


If half of NH_3 -N is nitrified, need another 5,600 lbs/day of oxygen. Double this amount for complete nitrification.

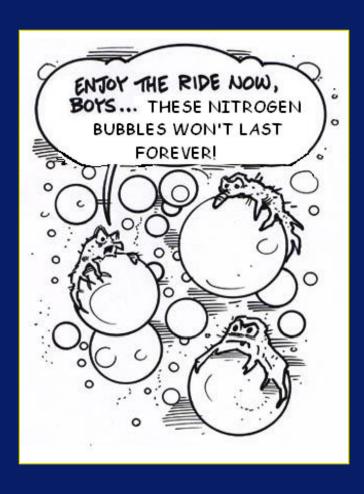
- Nitrification is Only Half of the Nitrogen Removal Process.
- Nitrate also Contributes to:
 - Eutrophication of Receiving Waters
 - Aquatic Toxicity (High Concentrations)
 - "Blue Baby Syndrome"
 - Accidental Death of Cattle.
- Safe Drinking Water Limit = 10 mg/L

- Accomplished by Many Different Kinds of Facultative Bacteria.
- Facultative Bacteria can "breathe" Oxygen or Nitrate or Sulfate.
- Given a Choice DO, then NO₃, then SO₄
- Denitrifiers are heterotrophs and **MUST** Have an Organic Carbon Food Source.

BOD / COD

Organic Carbon

$$NO_3^- + \frac{5}{6} CH_3OH$$


$$\frac{5}{6}$$
CO₂ + $\frac{1}{2}$ N₂ + $\frac{7}{6}$ H₂O + OH⁻

Alkalinity

- Produces 3.57 grams of alkalinity per gram of NO₃-N reduced.
- Forms ~0.5 grams of new cells per gram of NO₃-N reduced.
- Consumes 1.9 grams of Organic Carbon as Methanol per gram of NO₃-N reduced.
 (equivalent to 2.86 grams of COD)

Conditions to Denitrify

- DO < 0.6 mg/L
- Excess nitrate
- Carbon source
 - Influent BOD
 - Methanol
 - Molasses
 - Waste Beer

Preventing Denitrification

Preventing Denitrification

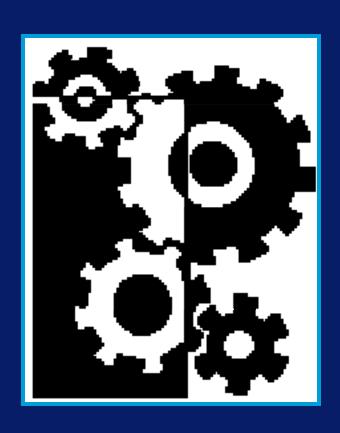
Food F:M > 0.12

Nitrate > 8 mg/L

Time

Configurations for Total Nitrogen Removal

When you need to nitrify and denitrify.

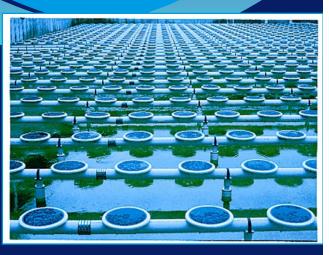

Factors to Remember

- BOD Removal
 - ✓ Uses 1.2 grams O₂
- Nitrification
 - ✓ Uses 4.33 grams O₂ per gram NH₃-N.
 - ✓ DO at 2 mg/L
 - ✓ Uses 7.14 grams alkalinity.
 - ✓ Does not use BOD.
 - ✓ Produces Acid.

- Denitrification
 - ✓ Uses nitrate instead of oxygen.
 - \checkmark DO < 0.6 mg/L
 - ✓ Uses 1.90 grams methanol or 2.86 grams COD per gram of NO₃-N.
 - ✓ Produces 3.57 grams alkalinity.

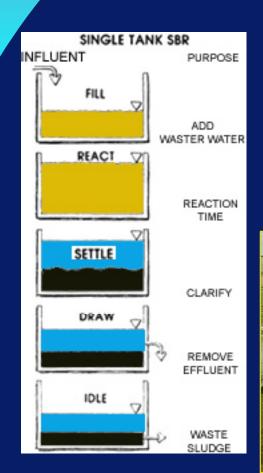
How does this work?

- Nitrifiers and denitrifiers do NOT have compatible needs.
 - Dissolved Oxygen
 - Organic Matter
- Nitrification must happen first.
- Denitrifiers need a carbon source.


Types of Nitrate Removal

- Chemical reduction
- On/Off Aeration in Activated Sludge
- Anoxic Zones in Activated Sludge
- Tertiary Denitrification
 - BAF
- Recycle to Upstream Rock Filters

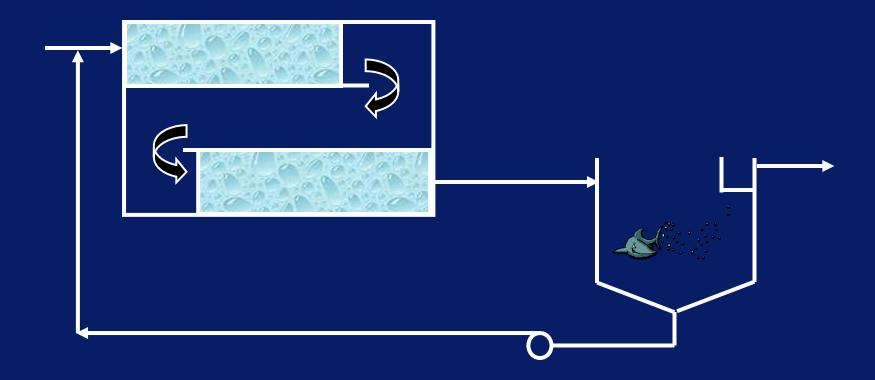
On/Off Aeration


- Nitrification and Denitrification take place in the same basin.
 - Sequencing Batch Reactor
- Control with Oxidation Reduction Potential or simply timing.
- Air on about 2/3 of total time.
- Simplest method of nitrate removal.

On/Off Aeration

- Uses less air for BOD removal.
- Very efficient, TIN<8 mg/L.
- Prevents floating blankets in the secondary clarifiers.

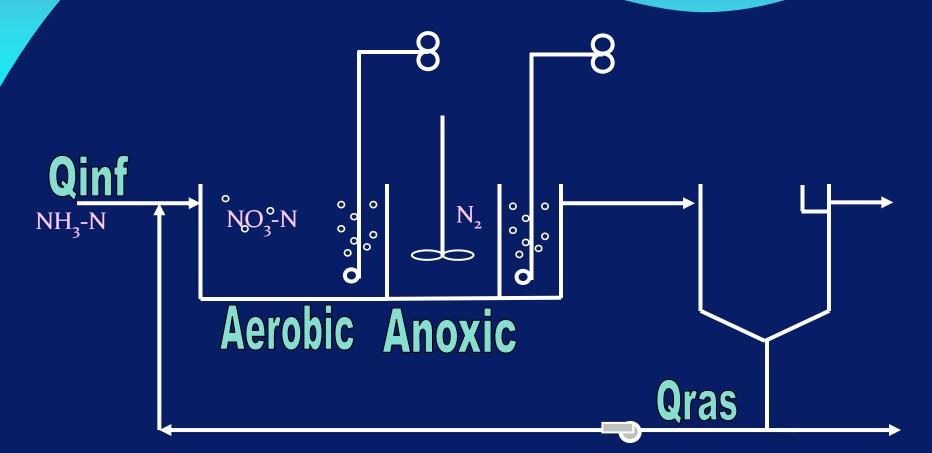
- Regains alkalinity
- Moderates pH
- SBR shown, works in most systems



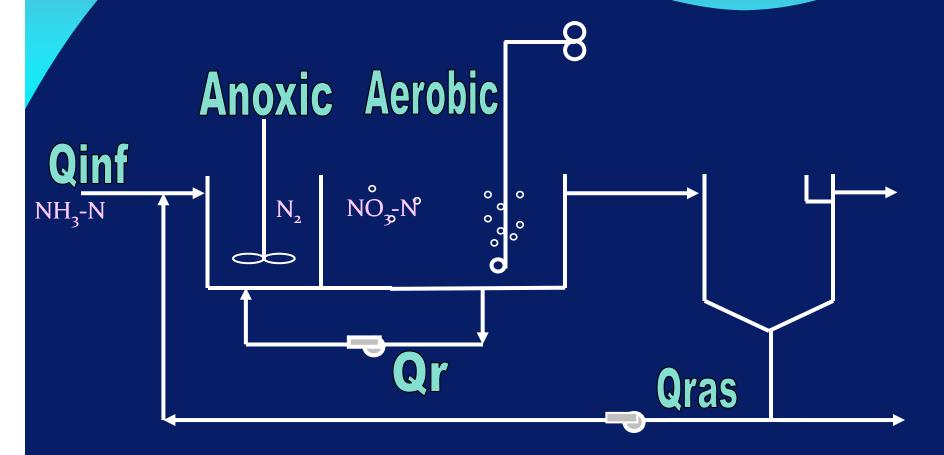
Anoxic Zones

- On/Off aeration in Space instead of Time
- Aeration basin is divided in aerated and unaerated (anoxic) zones.
- Pumps MAY recirculate flow between the anoxic oxic zones.
- Total N removed depends on recycle ratio.
 - At 100% QINF, Maximum 50% removed.
 - At 200% QINF, Maximum 67% removed.
 - At 400% QINF, Maximum 83% removed.

Anoxic Zones – Plug Flow

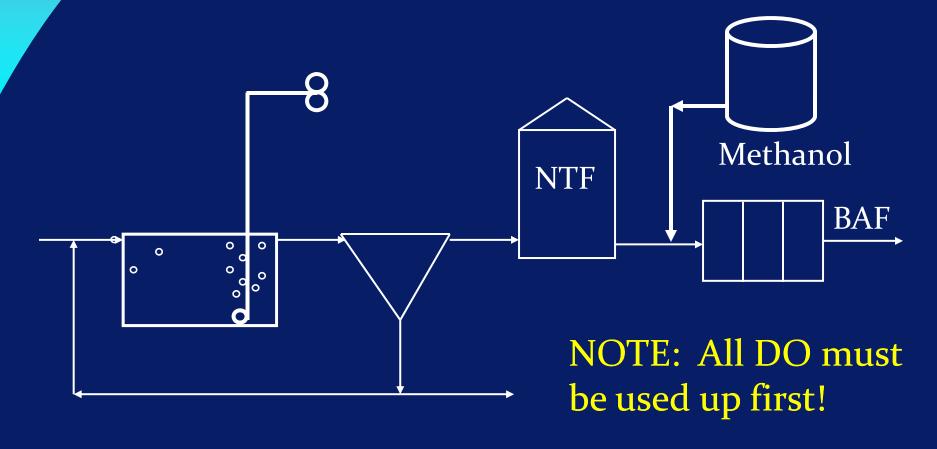


Plug Flow Activated Sludge

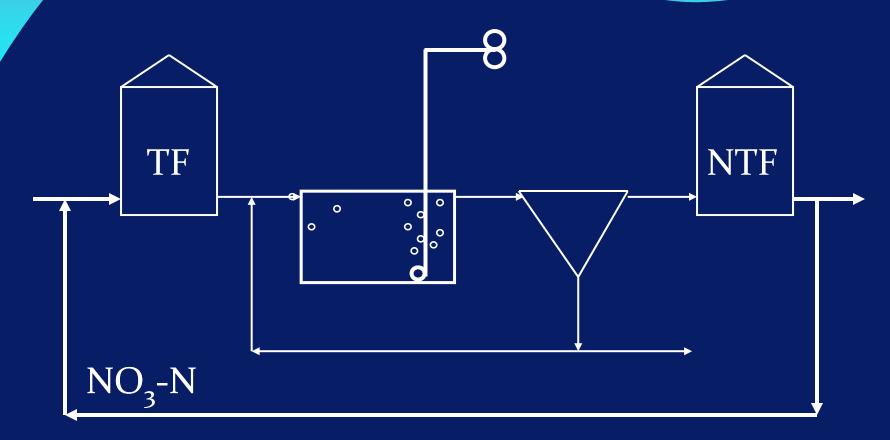

Anoxic Zones

Anoxic Zones

Tertiary Denitrification

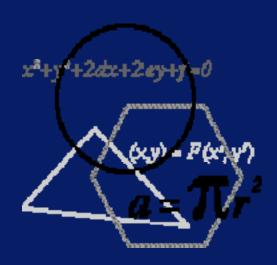

- Necessary when:
 - Tertiary nitrification already in place.
 - Aeration basins not large enough to nitrify and denitrify.
 - Site constraints on process footprint.
 - Very low nitrate limits must be met.
- REQUIRES external carbon source.

Tertiary Denitrification



Tertiary Denitrification

- Very effective. NO_3 -N < 2 mg/L
- Expensive!!!
- Does not regain alkalinity.
- Overdose of methanol may cause a permit violation.
- Safety issues surrounding methanol



Recycle to Roughing Filter

Review, Review, Review

- This much COD is needed for every mg/L of nitrate that must be denitrified to nitrogen gas. The COD source could be primary effluent or methanol.
 - A. 1.90 mg/L
 - B. 2.86 mg/L
 - C. 3.57 mg/L

- 2. This much alkalinity is regained for every mg/L of nitrate denitrified to nitrogen gas.
 - A. Alkalinity is not regained in this reaction.
 - B. 7.14 mg/L
 - C. 3.57 mg/L
 - D. 2.00 mg/L

- 3. With respect to natural systems, this element is most often the one that limits the growth of algae and other organisms.
 - A. Nitrogen
 - B. Iron
 - C. Potassium
 - D. Magnesium
 - E. Phosphorus

- 4. This much methanol is needed for every mg/L of nitrate that must be denitrified to nitrogen gas. Assume no other carbon source is present.
 - A. 1.90 mg/L
 - B. 2.86 mg/L
 - C. 3.57 mg/L
 - D. 4.33 mg/L

- 5. Within wastewater, nitrogen does not occur in which basic forms.
 - A. Organic Nitrogen
 - B. Nitrate
 - C. Ammonia
 - D. Nitrite
 - E. Nitrogen gas

- 6. What is the correct order of nitrification?
 - A. Ammonium > Nitrite > Nitrate
 - B. Nitrite > Ammonium > Nitrate
 - C. Ammonium > Nitrate > Nitrite
 - D. Ammonium > Nitrite > Nitrate > Nitrogen gas

- 7. Denitrification occurs in what zone?
 - A. Aerobic
 - B. Fermentation
 - C. Anoxic
 - D. Reaeration

- 8. Nitrobacter bacteria obtain their energy by oxidizing nitrite nitrogen to _____ nitrogen.
 - A. Nitrate
 - B. Nitrite
 - C. Ammonia
 - D. Nitrogen gas

- 9. An anoxic zone is primarily used to _____
 - A. Nitrify
 - B. Denitrify
 - C. Remove BOD
 - D. Remove phosphorus

- 10. Nitrosomonas bacteria obtain their energy by oxidizing ammonia nitrogen to _____ nitrogen.
 - A. Nitrate
 - B. Ammonia
 - C. Nitrite
 - D. Nitrogen gas

11. Nitrification consumes this many pounds of alkalinity for every pound of ammonia oxidized to nitrate.

- 12. Denitrification can be inhibited when the DO concentration is higher than this.
 - A. 0.5 mg/L
 - B. 1.0 mg/L
 - C. 2.0 mg/L
 - D. 4.0 mg/L

- 13. Recycle ratios of up to ______ % are necessary to achieve total inorganic nitrogen concentrations below 10 mg/L.
 - 200%
 - 400%
 - 100%
 - 8oo%

- 14. For tertiary denitrification, this supplemental carbon source is often added.
 - A. Dog food
 - B. Corn syrup
 - C. Methanol
 - D. Beer

- 15. This is the primary reason for limiting nitrate concentrations in receiving waters.
 - A. Drinking water standard of 10 mg/L NO3-N.
 - B. Excess nitrate stimulates algae blooms
 - C. Excess nitrate causes odor problems downstream
 - D. Nitrate is toxic to aquatic life and exerts a large oxygen demand.

16. What happens when denitrification takes place in the clarifier blanket?

- 17. How low does the influent sBOD to a trickling filter need to be for maximum nitrification rates?
 - A. <10 mg/L
 - B. <20 mg/L
 - C. <50 mg/L
 - D. <80 mg/L
 - E. <5 mg/L

- 18. Since nitrification is an acid generating process, it consumes _____.
 - A. Chlorine
 - B. pH units
 - C. Alkalinity
 - D. Biochemical oxygen demand

19. While BOD removal requires 1.5 lbs of oxygen per lb of BOD, nitrification requires this many lbs per lb of ammonia nitrogen.

- 20. Name the two nitrifying bacteria.
 - A. Pfisteria and nitrobacter
 - B. Nitrosomonas and nitrobacter
 - C. Nitrosomonas and pfisteria
 - D. Methanogens and acid formers

- - A. Aerobic bacteria
 - B. Facultative aerobes
 - C. Obligate aerobes
 - D. Finicky aerobes

- 22. Theoretically, ____lbs. of alkalinity is consumed per lb. of ammonia
 - A. 8.34
 - B. 3.12
 - C. 6.55
 - D. 7.14

- 23. The consumption of bicarbonate alkalinity by nitrifiers has the effect of raising the pH.
 - A. False
 - B. True

- 24. The reduction of nitrate ion to nitrogen gas by heterotrophic bacteria is called _________
 - A. Respiration
 - B. Nitrification
 - C. Denitrification
 - D. Anoxic zone

- 25. This concentration of nitrite is typical for a wastewater treatment plant effluent.
 - A. <0.5 mg/L NO2-N
 - B. 1-3 mg/L NO2-N
 - C. 5-10 mg/L NO2-N
 - D. $>10 \text{ mg/L NO}_2-N$

- 26. All of these requirements must be met before denitrification can take place. Check all that apply.
 - a) Presence of nitrate.
 - b) Absence of oxygen.
 - c) Presence of food (BOD)
 - d) Absence of a carbon source.
 - e) Methanol addition.

- 27. While nitrification is carried out by specialized autotrophic bacteria, denitrification can be done by a variety of these.
 - A. Coliforms
 - B. Heterotrophs
 - C. Anaerobes
 - D. Obligate aerobes
 - E. Ciliates

- 28. It is advantageous to denitrify following nitrification as nearly half of this may be recovered.
 - A. Dissolved Oxygen
 - B. Alkalinity
 - C. Nitrogen
 - D. Suspended solids
 - E. Phosphorus

- 29. This common atmospheric gas is the end product of denitrification.
 - A. Carbon Dioxide
 - B. Oxygen
 - C. Water vapor
 - D. Nitrogen Gas

- 30. Nitrogen sources in a wastewater treatment plant include all of these except
 - A. Digester supernatant return
 - B. Septic receiving
 - C. Industrial discharges
 - D. Urine and feces
 - E. Return activated sludge

- 31. Nitrogen ammonia is typically this percentage of the TKN entering a wastewater treatment plant
 - A. 30%
 - B. 60%
 - C. 90%
 - D. None of these is correct.

- 32. The process of chemically burning nitrogen away with sodium hypochlorite is referred to as
 - A. Chlorooxidation
 - B. Breakpoint chlorination
 - C. Ion exchange
 - D. Chemo-vaporization

- 33. As water temperatures drop, the MCRT should be to maintain stable nitrification.
 - A. Set to 10 days
 - B. Increased
 - C. Decreased
 - D. Set above 5 days

Answers

7.

9.

10.

7.14 11.

12.

13.

14.

15.

Blanket pops or Ashing 16.

17. 18.

4.33 B C D 19.

20.

21.

22.

23.

24.

25.

A. B, and C are correct 26.

27.

28.

29.

30.

31.

32.

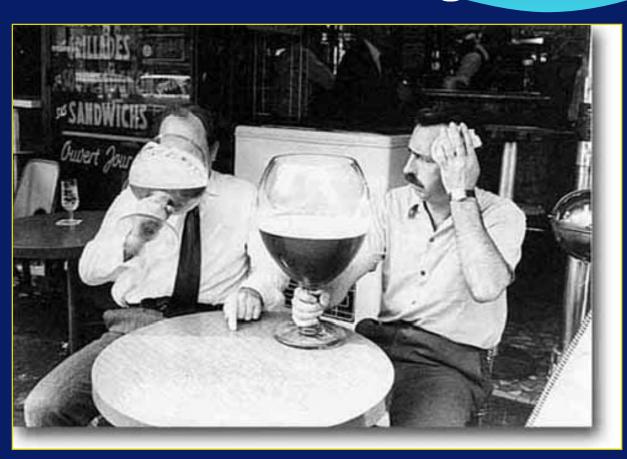
33.

INFLUENT DATA

- $\bullet Q = 3 MGD$
- \cdot NH₃-N = 25 mg/L
- \bullet NO₃-N = 5 mg/L
- \bullet Alk = 260 mg/L
- •BOD = 225 mg/L

CALCULATE

- •Effluent Alkalinity
 - Nitrification
 - Denitrification
- Pounds Methanol to Add
- Oxygen Demand



Questions?

Thank You for Coming!

