Sidney's Big Book of Water and Wastewater Math

INDIGO WATER GROUP

Unit Conversions to Know by Heart

1 inch = 2.54 centimeters 1 gallon = 8.34 lbs when specific gravity is 1.0

1 meter = 3.28 feet 1 kg = 2.2 lbs

1 mile = 5280 feet

1 acre = 43,560 ft² 1% = 10,000 mg/L 1 m² = 10.76 ft² 1 mg/L = 1 ppm

 $1 \mu g/L = 1 ppb$

1 gallon = 3.785 liters

1 ft³ = 7.48 gallons 1 day = 1440 minutes 1 m³ = 35.31 ft³ 1 hp = 0.746 kW

1 ft water = 0.433 psi 1 gram = 15.43 grains

1 grain per gallon = 17.1 mg/L

Water Formulas

pounds per day = (concentration in mg/L)*(flow rate in mgd)*(8.34)

chlorine dose = demand + residual

 $\text{velocity} = \underbrace{\text{flow}}_{\text{area}} \qquad \qquad V = \underbrace{Q}_{A}$

flow rate = $\underline{\text{volume}}$ $Q = \underline{V}$ time

overflow rate = flow rate area

weir loading rate = flow rate feet of weir

(concentration 1)*(volume 1) = (concentration 2)*(volume 2) $C_1V_1 = C_2V_2$

(conc. 1)*(volume 1) + (conc. 2)*(volume 2) = (conc. 3)*(volume 3)

 $C_1V_1 + C_2V_2 = C_3V_3$

horsepower = (flow in gpm)*(lift in feet)3960

Pumps

Numbers in RED can be changed. Numbers in BLUE are calculated by the spreadsheet.

Water Horsepower = {(GPM x Pump head)/ 3,956}

49.3 hр Run Time

hours per day days per week

\$/kwh

Brake Horsepower = Water Horsepower / % Pump Efficiency

70.4 ħр

Electricty Cost

0.09

12

Electrical or Motor Horsepower = Brake Horsepower / % Motor E

82.8

** Sometimes, this is called the wire to water horsepower.

Problem One:

Water is being pumped from a reservoir uphill 300 to a storage tank. Calculate the Brake Horsepower if the pump rate is 650 gpm.

Answer:

70.4

Problem Two:

A 25 horsepower pump is used to dewater a lake. If the pump runs for 12 hours a day for 5 days a week, how much will it cost to run the pump per week? Assume energy costs of 0.09 dollars per kilowatt hour.

Answer:

\$100.71

or he	0.746 1	0.00.0	49 hours		0400 #4
25 hp	0.746 kw	0.09 \$	12 hours	5 days	\$100.71
	1 hp	1 kw*h	1 day	1 week	week

** Set it up this way because you need 25 horsepower per hour to run this pump.

Problem Three:

Calculate the water horsepower required for a pump to raise water 300 feet at a rate of 650 gallons per minute. If the pump runs for 12 hours a day for 5 days a week, how much will it cost to run the pump for one year? Assume energy costs of 0.09 dollars per kilowatt hour.

Answer:

49.3 hр

Answer:

\$10,327.21

49.3 hp	0.746 KW	0.09 \$	12 hours	5 days	52 weeks	\$10,327.21
_	1 hp	1 kw*h	1 day	1 week	1 vear	vear

Pumps and Pressure

1. A pump station is used to lift water 50 feet above the pump station to a storage tank. If the pump is 4.2 hp and has a motor efficiency of 0.9 and a pump efficiency of 0.85, how fast can the pump station pump water into the tank?

Answer: gpm

2. The pressure gage at the bottom of a tank reads 35 psi. How many feet of water are in the tank?

Answer: feet

3. Water is being pumped from a reservoir uphill 120 to a storage tank. Calculate the Brake Horsepower if the pump rate is 1200 gpm.

Answer: hp

4. A 25 horsepower pump is used to dewater a lake. If the pump runs for 8 hours a day for 7 days a week, how much will it cost to run the pump per week? Assume energy costs of 0.07 dollars per kilowatt hour.

Answer:

5. A water tank contains 80,000 gallons of water and is 80.85 feet deep. What is the water pressure at the bottom of the tank?

Answer: psi

6. Water is being pumped from a reservoir uphill 120 to a storage tank. Calculate the Brake Horsepower if the pump rate is 600 gpm.

Answer: hp

7. A 25 horsepower pump is used to dewater a lake. If the pump runs for 5 hours a day for 5 days a week, how much will it cost to run the pump per week? Assume energy costs of 0.07 dollars per kilowatt hour.

Answer:

8. The pressure gage at the bottom of a tank reads 20 psi. How many feet of water are in the tank?

Answer: feet

9. Calculate the water horsepower required for a pump to raise water 120 feet at a rate of 600 gallons per minute. If the pump runs for 5 hours a day for 5 days a week, how much will it cost to run the pump for one year? Assume energy costs of 0.07 dollars per kilowatt hour.

Answer: hp Answer: \$

10. A water tank contains 80,000 gallons of water and is 115.5 feet deep. What is the water pressure at the bottom of the tank?

Answer: psi

Sidney Innerebner, Ph.D., P.E.

11. Calculate the water horsepower required for a pump to raise water 120 feet at a rate of 600 gallons per minute. If the pump runs for 24 hours a day for 7 days a week, how much will it cost to run the pump for one year? Assume energy costs of 0.09 dollars per kilowatt hour.

Answer: hp Answer: \$

12. Water is being pumped from a reservoir uphill 50 to a storage tank. Calculate the Brake Horsepower if the pump rate is 250 gpm.

Answer: hp

13. A pump station is used to lift water 500 feet above the pump station to a storage tank. If the pump is 49.6 hp and has a motor efficiency of 0.9 and a pump efficiency of 0.85, how fast can the pump station pump water into the tank?

Answer: gpm

14. Calculate the water horsepower required for a pump to raise water 500 feet at a rate of 300 gallons per minute. If the pump runs for 24 hours a day for 7 days a week, how much will it cost to run the pump for one year? Assume energy costs of 0.09 dollars per kilowatt hour.

Answer: hp Answer: \$

JOB	JOB NO.
SHEET NO	OF
CALCULATED BY	DATE
CHECKED BY	DATE
SUBJECT	

Pumps & PRESSURE

3.
$$HP = \frac{(qpm)(HEAD, ft)}{3960}$$
 no efficiency terms were any $HP = \frac{(1200qpm)(120 ft)}{3960}$

JOB	JOB NO
SHEET NO.	OF
CALCULATED BY	DATE
CHECKED BY	DATE
SUBJECT	

\$ 10648.91/year

Pump Problems

-
90. A centrifugal pump is pumping 200 gpm against a 40 ft total pumping head. The output power of the pump is approximatelyhp. a) 0.5 b) 2 c) 15 d) 121
91. A raw water pump with a 6" bore and a 3" stroke pumps 60 cycles/minute. What is the pumping rate in gpm? a) 18 gpm b) 26.75 gpm c) 22.5 gpm d) 14.3 gpm
92. What is the flow rate (gpm) from a pump with a discharge diameter of 6" and a velocity of 5 ft/sec? a) 198 gpm b) 440 gpm c) 44 gpm d) 338.5 gpm
93. What is the pumping rate in gpm of the following piston pump? Diameter = 10 inches, Stroke length = 6 inches, Strokes/min = 30 a) 293.6 gpm b) 86.9 gpm c) 45.5 gpm d) 62.1 gpm
94. A centrifugal pump is pumping 200 gal/min against a 40-foot total pumping head. The approximate output power of is 2 HP. What will the output power be if the pumping head increased to 60 feet? a) 1 hp b) 2 hp c) 3 hp d) 8 hp

95. A single-piston reciprocating pump has a 6" diameter piston with a 6" length of stroke. It makes 16 discharge strokes/min, the pumping rate isgpm. a) 6 b) 12 c) 25 d) 47
96. A pump delivers 240,000 gallons per day at a static head of 275 feet. Calculate the pressure equivalent to this head, expressed in pounds per square inch. a) 275 psi b) 119 psi c) 550 psi d) 635 psi
97. Determine the flow capacity of a pump in gpm if the pump lowers the water in a six-foot square clear well by 8 inches in 5 minutes. a) 57.6 gpm b) 92.4 gpm c) 179.5 gpm d) 35.9 gpm e) 430 gpm
98. What horsepower must a pump deliver to water that must be lifted 90 feet? The flow is 40 gpm. a) '1.0 HP b) '50 HP c) '0.9 HP d) '60 HP e) '76 HP
99. If the required water horsepower of a pump is 50 HP, what must the motor horsepower be if the efficiency of the pump is 75 percent and the efficiency of the motor is 90 percent? a) 74 HP b) 40.5 HP c) 50 HP d) 89 HP e) 111 HP

- 100. How many kilowatt-hours per day are required by a pump with a motor horsepower of 50 horsepower when the pump operates 24 hours a day?
 - a)716 kW-hr/day
 - b)960 kW-hr/day
 - c)894 kW-hr/day
 - d)1,075 kW-hr/day
 - e) 1,287 kW-hr/day

Jar Testing

- 101. Through jar testing, you have determined that your best Alum dose is 5 mg/L. Your liquid alum has a specific gravity of 1.31 and its strength is 49.8%. Your plant flow is 700 GPM. How many mL/min will your chemical feed pump need to pump to produce this residual?
 - a) 84.1 mL/min
 - b)200 mL/min
 - c) 10.1 mL/min
 - d)20.3 mL/min
 - e)42.0 mL/min

Miscellaneous

- 102. If the water rate is \$5.50 for the first 500 cu ft and all water used over the minimum is billed at a rate of \$0.25 per 100 cu ft, how much would a customer using 1200 cu ft be billed?
 - a)\$5.25
 - b)\$6.25
 - c)\$6.75
 - d)\$7.25
- 103. Calculate the percent reduction in flows achieved by an industrial water conservation program if water flows are reduced from 350 gpm to 220 gpm
 - a)31%
 - b)37%
 - c) 44%
 - d)59%
 - e)63%

PUMP PROBLEMS HP = (0, 3pm)(Head, ft) (3960) sefficiency) HP = (200 apm) (40ft) 3960 HP= 2.0 91. Convert all dimensions to feet. Then, find the volume pumped per state. 6 inches / 1 foot /- 0.5 ft = radius = 0.25 ft 3inches / 1foot / 0.25 ft Volume = Tr2d Volume = (3.14)(0.25 ft)2(0.25 ft) Volume = 0.049 ft3 0.049 ft3/60strotes / 7.48 gallors | - 22 gallors stroke // minute / ft3 / min. 92. Velocity = Flow diameter = 0.5 St radius = 0.25 ft 5H Flow Sec (3.14) 6.25 Flow 0.19625 0.981 ft3 = Flow sec.

	•
92. (coxt.)	į
	-
0.981 ft3/7.48 gallors / 60 sec 1 440 aprillons	<
0.981 ft3/7.48 gallors 60 sec 1 440 gallons sec 1 ft3 / min min	
), comment
93. 10 inches / I fat / D. R.3 At so radius	= 142 P+
93. 10 inches 1 fost 0.83 ft so radius 12 inches	
	:
Volume = TTr2d	
$V = (3.14)(0.42 \text{ ft})^2(0.5 \text{ ft})$	į
V=(3.14)(0.42 ft-)(0.5 ft)	;
V= n 14/9 C+3/	***************************************
V= 0.2769 ft3/ strote	
	i i
x 27/9 (13/2) strot ex 1748 million / 21 00	- // -
0.2769 ft3 30 strokes 7.48 gallors - 62.1 ga stroke minute 1 ft3 m,	<u> 11.005 : </u>
5710c 1 1111101 t 1 171 1	inute.
	i I
all 11.0 = (() = Y 1/a-1 (4)	1
94. HP = (Q, gpm) Head, fx)	
14P= (200) (051)	
HP = (200 gpm X 60ft) 3960	;
_	
Hf = 3.03	and the state of t
	†
	;
	i

Volume = TLr2d 95. V = (3.14)(0.25 F+ \$0.5 F+ V= (3.14)0.25 F+Y0.25 F+Y0.5F+ 1= 0.098125 fx3 0.098125 ft3/16 strokes | 7.48-pallons | 11.74 gallons stroke | minute | 1 ft3 | min 96. 275 ft head | 0.433 psi | _ 119 psi Volume Volume = (1) YwYd) V=(6 f+ Y 6 f+ X 8 inches) V= (6+16+10.67 ft) V= 24 ft3 Q= 4.8 ft3/min 4.8 ft3 /7.48 gallons | 35.9 gallons min / 1 ft3 | minute HP = (0, gpm X Hrad, f+) HP = (40 gpm X 90 ft) 3960

99. If the motor reeds to be 50 HP
at 100% efficiency, then it
needs be larger as efficiency decreases. 50 HP = (Q X head) 198000 = (QX head) 4P = 198000 100. 50 HP | 6.745 KW h | 24 hours | 894 KW-hac hour | 1 HP | 1 day | day 101. ppd Alum = (ms/L) (0, mgd) 8.34) 700 gallons / 1 MG | 1440 min | 1.008 mgg | minute / 1000000-gal | 1 day | ... Ppd Alum = (5 ms/L) 1.008 mgd 18.34) Ppd Alum = 42.0 PPd Alum = (m8/L) Q, mgd 18.34) 42.0ppd = (49.8% X10,000) Q X 8.34) (1.31) 7.72 apd =

78

		:
<i>\IOI_(</i>	(coxt.)	· · · · · · · · · · · · · · · · · · ·
7.7.	2 gallons / 1 day 3.785 L 1000 m L 30.2	s mL
d	2 gallons 1 day 3.785 L 1000 m L 30.3 ay 1440 min 1 gallon 1 L	min
M/S	5C.	(
102.	1200 cuft	
	-500 cuft + charged #5.50	
	700 cust 4 charged (7)(0.25))= \$1.75
A Comment of the Comm	TOTAL CHARGE = \$5.50 +\$1.75	1
- And the least that the second	\$ 7.25	
DESCRIPTION AND PROPERTY.		
103.	2 Reduction = 350gpm - 220gpm + 10	
visit de controlle		:
To his to	12 Beduction = [130 gpm] + 100	
d need to the state of	L 350gpm	1
	9. Beduction = 37	
100		
Territoria de la constitución de		
10-1		
		;
HA.		

PUMPS

- 1. A centrifugal pump is pumping 200 gpm against a 40 ft total pumping head. The output power of the pump is approximately _____ hp.
 - a) 0.5
 - b)2
 - c) 15
 - d) 121
- 2. A sludge pump with a 6" bore and a 3" stroke pumps 60 cycles/minute. What is the pumping rate in gpm?
 - a) 22 gpm
 - b) 18 gpm
 - c) 27 gpm
 - d)35 gpm
- 3. What is the flow rate (gpm) from a pump with a discharge diameter of 6" and a velocity of 5 ft/sec?
 - a) 440 gpm
 - b)198 gpm
 - c) 44 gpm
 - d)338.5 gpm
- 4. What is the pumping rate in gpm of the following piston pump? Diameter = 10 inches, Stroke length = 6 inches, Strokes/min = 30
 - a) 60.6 gpm
 - b)293.6 gpm
 - c) 86.9 gpm
 - d)45.5 gpm

5. A single-piston reciprocating pump has a 6" diameter piston with a 6" length of stroke. It makes 16 discharge strokes/min, the pumping rate isgpm. a) 6 b) 12 c) 25 d) 47
6. A centrifugal pump is pumping 650 gal/min against a 32-foot total pumping head. What is the approximate output power of the pump? a) 1 hp b) 5 hp c) 3 hp d) 8 hp ?Operations Forum May 1997
7. A pump delivers 240,000 gallons per day at a static head of 275 feet. Calculate the pressure equivalent to this head, expressed in pounds per square inch. a) 119 psi b) 275 psi c) 550 psi d) 635 psi ?WEF/ABC 2002 Guide
 8. Water is being pumped from a reservoir uphill 120 to a storage tank. Calculate the Brake Horsepower if the pump rate is 1200 gpm. a. 15 b. 36 c. 120 d. 8
 9. A 25 horsepower pump is used to dewater a lake. If the pump runs for 8 hours a day for 7 days a week, how much will it cost to run the pump per week? Assume energy costs of 0.07 dollars per kilowatt hour. a. \$27.50 b. \$92.15 c. \$73.11 d, \$112.35
10. Calculate the water horsepower required for a pump to raise water 120 feet at a rate of 1200 gallons per minute. If the pump runs for 8 hours a day for 7 days a week, how much will it cost to run the pump for one year? Assume energy costs of 0.07 dollars per kilowatt hour. a. \$15.03 b. \$105.27 c. \$5,489.00 d. \$489.12

JOB <u>Pumps</u>	JOB NO//_
SHEET NO.	OF
CALCULATED BY	DATE
CHECKED BY	DATE
SUBJECT	

TOTAL DYNAMIC HEAD = FT OF LIFT + FRICTION LOSSES

Volume per Stroke = Tr2h = (3.14 X 0.25 f+ X 0.25 f+ X 0.25 f+) = 0.049 ft3

JOB <u>Pumps</u>	JOB NO//7
SHEET NO.	OF
CALCULATED BY	DATE
CHECKED BY	DATE
SUBJECT	

JOB PUMPS	JOB NO
SHEET NO.	OF
CALCULATED BY	DATE
CHECKED BY	DATE
SUBJECT	

10. From #8, WE KNOW THAT THE PUMP 15 36 HP

36 HP |0.746 kw | 8 hr | 365 day | 6.07\$]= \$5,489

1 hph | 1 day | 1 you | 1 kw